beautified for submission

This commit is contained in:
Patrick 2024-07-21 17:36:22 +02:00
parent c4a93e9fae
commit ffe355e47c
3 changed files with 29 additions and 13 deletions

View File

@ -51,7 +51,6 @@ class AsyncDataLoader(torch.utils.data.DataLoader):
self.__dataset_access.acquire()
self.__dataset_access.release()

View File

@ -4,7 +4,7 @@ import numpy.random
import torch.utils.data
import torch.cuda
from architecture import MyCNN
from architecture import model
from dataset import ImagesDataset
from AImageDataset import AImagesDataset
@ -49,10 +49,7 @@ def train_model(accuracies,
dataset = ImagesDataset("training_data")
# dataset = torch.utils.data.Subset(dataset, range(0, 32))
train_data, eval_data = split_data(dataset)
# train_data, eval_data = torch.utils.data.random_split(dataset, [0.5, 0.5])
augmented_train_data = AImagesDataset(train_data, augment_data)
train_loader = AsyncDataLoader(augmented_train_data,
@ -123,12 +120,8 @@ def train_model(accuracies,
losses.append('eval_loss', eval_loss.item() / len(eval_data))
print("Eval: ", eval_positives.item(), "/ ", len(eval_data), " = ", eval_positives.item() / len(eval_data))
# print epoch summary
# print(f"Epoch: {epoch} --- Train loss: {train_loss:7.4f} --- Eval loss: {eval_loss:7.4f}")
if eval_positives.item() / len(eval_data) > 0.5:
torch.save(model.state_dict(), f'models/model-{start_time.strftime("%Y%m%d-%H%M%S")}-epoch-{epoch}.pt')
torch.save(model.state_dict(), f'models/model-{start_time.strftime("%Y%m%d-%H%M%S")}-epoch-{epoch}.pth')
with open(f'models/model-{start_time.strftime("%Y%m%d-%H%M%S")}.csv', 'a') as file:
file.write(f'{epoch};{len(augmented_train_data)};{len(eval_data)};{train_loss.item()};{eval_loss.item()};'
f'{train_positives};{eval_positives}\n')
@ -140,15 +133,13 @@ def train_worker(p_epoch, p_train, p_eval, plotter_accuracies, plotter_loss, sta
device = 'cuda'
model = MyCNN(input_channels=1,
input_size=(100, 100)).to(device)
model.to(device)
num_epochs = 1000000
batch_size = 64
optimizer = torch.optim.Adam(model.parameters(),
lr=0.0001,
# weight_decay=0.1,
fused=True)
loss_function = torch.nn.CrossEntropyLoss()

26
verify.py Normal file
View File

@ -0,0 +1,26 @@
import torch
import torch.utils.data
from architecture import model
from dataset import ImagesDataset
if __name__ == "__main__":
model_params = torch.load("submit_attempts/Nr1/model-20240713-164545-epoch-30.pth")
model.load_state_dict(model_params)
model.eval()
dataset = ImagesDataset("training_data")
correct = 0
print("evaluating...")
for (image_t, class_id, _, _) in torch.utils.data.DataLoader(dataset):
out = model(image_t)
if out.argmax() == class_id:
correct += 1
print(f"Identified {correct} images out of {len(dataset)} correctly")
print(f"Accuracy: {100 * correct / len(dataset)}%")