import torch import torch.utils.data from architecture import model from dataset import ImagesDataset if __name__ == "__main__": model_params = torch.load("submit_attempts/Nr1/model-20240713-164545-epoch-30.pth") model.load_state_dict(model_params) model.eval() dataset = ImagesDataset("training_data") correct = 0 print("evaluating...") for (image_t, class_id, _, _) in torch.utils.data.DataLoader(dataset): out = model(image_t) if out.argmax() == class_id: correct += 1 print(f"Identified {correct} images out of {len(dataset)} correctly") print(f"Accuracy: {100 * correct / len(dataset)}%")