AI-Project/submit_attempts/Nr1/model-20240713-164545.txt

49 lines
2.0 KiB
Plaintext

device: cuda
batch_size: 64
optimizer: Adam (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
capturable: False
differentiable: False
eps: 1e-08
foreach: None
fused: True
lr: 0.0001
maximize: False
weight_decay: 0
)
loss_function: CrossEntropyLoss()
augment_data: True
model: Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
(6): MaxPool2d(kernel_size=3, stride=3, padding=1, dilation=1, ceil_mode=False)
(7): Dropout2d(p=0.1, inplace=False)
(8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): ReLU()
(11): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(12): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(13): ReLU()
(14): MaxPool2d(kernel_size=3, stride=3, padding=1, dilation=1, ceil_mode=False)
(15): Dropout2d(p=0.1, inplace=False)
(16): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(17): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(18): ReLU()
(19): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
(20): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(21): ReLU()
(22): MaxPool2d(kernel_size=3, stride=3, padding=1, dilation=1, ceil_mode=False)
(23): Flatten(start_dim=1, end_dim=-1)
(24): Dropout(p=0.25, inplace=False)
(25): Linear(in_features=2048, out_features=1024, bias=True)
(26): ReLU()
(27): Linear(in_features=1024, out_features=512, bias=True)
(28): ReLU()
(29): Linear(in_features=512, out_features=20, bias=False)
)